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An analytical solution of the fourth-order linear thermal conductivity equation is 
presented. This solution is used to develop a method for determining thermal flux 
on the surface of the body under study. 

In recent years there has been much interest in determining thermal fluxes on the sur- 
faces of bodies from measurements of temperatures within the body. The number of measurement 
points required may vary, depending on the method used for thermal flux determination and 
its accuracy. Thus, e.g., in [i, 2] a sensor with four thermocouples was considered, and 
thermal flux was calculated numerically during the course of heating. 

However, according to [3], with such a number of measurement points one can obtain an 
analytic solution for the temperature field with quite high accuracy and then use Fourier's 
law to determine the unknown thermal flux. Such an approach simplifies calculations and in- 
creases accuracy. The present study will present one possible variant of this approach. 

The sensors used in the thermal flux studies (Fig. i) were in the form of copper cylin- 
ders with thermally insulated side surface to ensure uniform thermal flux in any arbitrary 
cylinder section. Four thermocouples were installed along the cylinder axis at the distances 
indicated in Fig. i, and the emf from the thermocouples was measured by a K12-22 loop oscillo- 
scope. 

The thermal sensor was installed a certain distance from the nozzle of a plasmotron with 
axes of symmetry of sensor and nozzle coinciding. With the plasmotron in operation, a high- 
temperature gas flow acts on the endface of the sensor, producing a change in thermocouple 
emf, which is shown converted into degrees of temperature in Fig. 2. The data presented in 
Fig. 2 must now be used to determine the value of the thermal flux passing through the cylin- 
der endface. 

It was shown in [3] that solutions of third-order linear equations relative to an exact 
so%ution of the nonlinear equation have an error of the order of 5%, while for fourth-order 
equations the error is not more than 1%. Since we have four temperature measurements within 
the sensor, to determine the temperature field we must solve the following system of equa- 
tions: 

a~@ a~e 
(i) 

01~=o = 0 (RI  ~ x ~ RO, 

OI~,=R, = q~ ('0 ('~ > 0), 

O k = ~  = m~ ('0 ('~ > 0), 

OI~-R~ =- % ('0 ('~ > 0), 

01~=~ = ~o~ ( 0  ('~ > 0), 

(2) 

(3) 

(4) 

(5) 

(6) 

where @ = t -- to; to is the initial sensor temperature; ao, thermal diffusivity of the sen ~ 
sor material at temperature to; and ~I(T), ~2(T), ~3(T),~(T), functions of the temperature 
change with time at points R:, R2, Rs, and R~, respectively. 
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Fig. 1 Fig. 2 

Fig. i. Diagram of thermal flux sensor: i) copper cylinder; 
2) body; 3) shield cone; 4) textolite inserts; 5) thermocouple 
leads. 

Fig. 2. Change in temperature AT(~ with time �9 (sec) at vari- 
ous thermal flux sensor sections. 

Taking the Laplace transform of system (1)-(6) and retaining only first-order time de- 
rivatives of the functions ~1(z), ~2(T), ~3(z), and ~,(z) upon return to the original, we ob- 
tain the following solution of the original system: 

0 (x, -~) = ~o, (~) + [..o. (~) -- ~ (~)l x-- R~ ,x~ (x) R~ ~ .~. (x) 
R~ - -  R~ F. + [% (x) - -  q)t ('01 F~ 

- - +  

x--R~ ~u(x) ( ~z(x) F~ ) 
+ [q~, (!5 - -  q h  0:)1 R ~  - -  R ~  F~ ' . + 

( ) x - - R 1  ~a~(x) (*~z(x) x--- R~ ~.,, (x) ~ (x) F~ + [q~4 ('r) - -  q)i ('r)] R~ --  R~ F~ 
+ [r ('r)-- q~'~ (x)l R~ --  R~ Fa ~ (x) F~ ~ l  (x) 

(7) 

FI ' 

where 

= -~ - -  . . . . . . . .  R~) -i- (R~ - -  R~) =1 F ,  (R~ .... R~)I(R~ R~) ~ +  (R~ R,)  ~ + ( R ~  R,)~I (R~ R:~)[(R,~ - R : 3  ~ - I - (R~ - - -  '~ 

- -  ( R 3  - -  Rs)  [ (R~  - -  R~)  z -[- (Rs  - - -  R , )  2 -F  (R~  - -  R1)2] ;  

24a o 

- - ( R ~ - - R 3 )  (R~--RO~(R~--R3)2+(R3--Ra)2(R~--R3)=+(R3--R')~(R~--RO2-- 
24a o 

--- (Rs - -  R~) (R~--R,)Z(R~--R2)2+ (Rz--RI)z(R~ --R~)2-p (R~--RI)Z(R~--R,) 2 -}- 
24ao 

+ ( R ~ - -  R~) (R~ ~ R~) ~ + (R~ - R~) ~ + (R~ - -  R, )  ~ _ ( R ~ - -  R~) ( R ~ - -  R~) ~ + (R~ - -  R,)  ~ + (R~ - R~) ~ 
80a 0 80ao 

(R~- -R~)  ~ ~ - ( R 3 - - - R O ~ §  ~ ' 
80ao 

and the functions ~,t(x), ~a,(x), ~31(x) and ~x=(x), ~2~(x), ~32(x) are obtained from F~ and 
F=, respectively, by sequential substitution of Rs, R3, R~ for x. 

Solution (7) is real within the region R1~x~ R~. However, in view of the small size 
of the interval [0, RI], solution (7) can be extended to the interval 0~x~R~. Then in 
accordance with Fourier's law we have the following expression for definition of the thermal 
flux at x = 0: 
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Fig. 3. Thermal flux q (10 T W. m -2) vs time 
T (sec) as calculated by: i) method of [i], 
time step 0.06 sec; 2) present method, AT = 
0.02 sec; 3) AT = 0.06 sec. 

(8) 
q (~) = - -  [~o + X~O (x, T)] Ox ~=o' 

where ~o and X~ are the corresponding coefficients of the temperature dependence of the ther- 
mal conductivity coefficient. The value of the second term in brackets in Eq. (8) may com- 
prise 15% of ~o. 

Figure 3 shows results of thermal flux calculations for various time intervals. For 
comparison, data from a calculation by the method of [I] are also shown. 

It follows from Fig. 3 that the method proposed here provides satisfactory agreement 
with the data of other authors with minimum calculation effort. 

NOTATION 

t, temperature; T, time; ao, thermal diffusivity; x, coordinate along sensor axis; RI, 
R2, R~, R~, coordinates of thermocouple positions; q, thermal flux density; Io, ~, coeffi- 
cients in temperature dependence of thermal conductivity. 
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